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a b s t r a c t

In this paper we present an evolutionary approach for the problem of discovering pressure patterns
under a quality measure related to wind speed and direction. This clustering problem is specially
interesting for companies involving in the management of wind farms, since it can be useful for analysis
of results of the wind farm in a given period and also for long-termwind speed prediction. The proposed
evolutionary algorithm is based on a specific encoding of the problem, which uses a dimensional
reduction of the problem. With this special encoding, the required centroids are evolved together with
some other parameters of the algorithm. We define a specific crossover operator and two different
mutations in order to improve the evolutionary search of the proposed approach. In the experimental
part of the paper, we test the performance of our approach in a real problem of pressure pattern
extraction in the Iberian Peninsula, using a wind speed and direction series in a wind farm in the center
of Spain. We compare the performance of the proposed evolutionary algorithm with that of an existing
weather types (WT) purely meteorological approach, and we show that the proposed evolutionary
approach is able to obtain better results than the WT approach.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Long-term wind speed prediction and wind speed series
reconstruction are two important problems currently faced by
companies exploding wind farms. Although both problems seem
quite different, actually they are usually solved using very similar
techniques: in both cases amodel for characterizing thewind speed
is constructed based on previous real wind measures, and then,
applied to future values of time in the case of long-termwind speed
prediction, or to values in the past in order to reconstruct wind
speed series. Different techniques have been used to obtain these
wind speed models, such as statistical methods [1,2], neural
networks [3e5], support vector machines [6] etc.

The majority of the existing techniques to construct long-term
wind speed models are exclusively based on past wind speed data,
and some of them include other atmospheric variables such as local
temperature, radiation or pressure at the measuring point. Intui-
tively, this approach is correct, since almost all the models are
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developed for a specific geographic point (usually a wind farm),
where several years of past data are available. The question that
arises is whether we could obtain a reasonably accurate model for
long-term wind speed prediction (or wind speed series recon-
struction), based on synoptic information (pressure), instead on
only local information. In fact, this idea has been successfully
applied to rainfall or pollution prediction in the last few years
[7e9]. In these papers, rainfall or pollution measures are explained
depending on different pressure synoptic patterns. The objective of
this paper is to do something similar with a measure of wind speed
in a given point, i.e. obtaining the pressure patterns (pressure
clusters) which better explain a wind speed measure in a wind
farm. As has been mentioned before, this system would be really
interesting for companies which manage wind farms, since it
allows a good analysis of the wind farm production results, and can
also be used to long-term production prediction.

Specifically, in this paper we state the problem as a clustering
problem in a search space formed by a grid of synoptic pressure
measures. The objective is to obtain N groups of synoptic pressure
situations which produce the most similar wind vectors (wind
speed and direction) in a given point (usually a wind farm project).
The objective of the paper is twofold, since we propose the use an
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Evolutionary Algorithm (EA) to solve this problem. Thus, we show
that a soft-computing technique such an EA can be successfully
applied to this clustering problem. In the paper, we describe in
detail the problem formulation, algorithm encoding, and the
different operators that must be included in our approach to
improve its efficiency in this problem. We compare the perfor-
mance of the EA with that of a previous pure meteorological
approach for the problem, and we show that the proposed EA
obtains better results in terms of the objective functions defined to
measure the quality of the solutions obtained.

The structure of the rest of the paper is the following: next
section provides the necessary concepts about clustering problems
and evolutionary computation techniques needed to follow the rest
of the paper. Section 3 presents the problem formulation. Section 4
describes in detail the main points of the proposed EA: encoding,
crossover operator, mutation operator and selection operator.
Section 5 presents the experimental part of the paper, where we
provide the main results obtained and a comparison with an
existing algorithm, purelymeteorological, described in a subsection
of this part of the paper. Section 6 closes the paper giving some final
conclusions.

2. Background

2.1. A brief review of clustering algorithms

Clustering is an important subgroup of unsupervised learning
techniques consisting in grouping data objects into disjoint clusters
[10e12]. The classification into clusters must be done in such a way
that objects in the same cluster are similar with respect to a given
measure, and different from the objects in the other clusters, with
respect to the same measure. Clustering has been applied to a wide
variety of problems in many different fields such as pattern
recognition, bio-engineering, image quantization, renewable
energy prediction [13e16], etc.

In Ref. [17], four major class of clustering algorithms are iden-
tified: first, algorithms based on the idea that neighbor data should
share the same cluster. Classical clustering algorithms such as
density-based approaches [18] belong to this first group. As pointed
out in Ref. [17], these kind of algorithms are robust to detect clus-
ters of any shape, but they fail to locate clusters when there is small
spatial separation between clusters. The second set of clustering
algorithms is formed by those approaches which consider intra-
clusters variation (intra-clusters points or centroids) to form the
final solution. This category of algorithms includes the well known
K-means [17,19,20], and other approaches such as model-based
clustering [21]. Following [17], the third category includes a simul-
taneous rowecolumn clustering known as bi-clustering algorithms
[22]. Finally, the four group of clustering algorithms includes
approaches that optimize different characteristics of the data set.
This group includes the multi-objective clustering algorithms
[14,23] and also clustering ensembles approaches [24].

In the last few years, evolutionary computing algorithms (EAs)
have been widely applied to clustering problems, due to their
capacity to be applied to very different problems with very few
changes, and also because these algorithms are able to manage
constraints in an efficient way. Thus, EAs have been applied to
improve the K-means approach, for example in [25], obtaining the
genetic K-means algorithm, which is known to be more effective
that the K-means in hard clustering problems. Similar approaches
have been used in different applications, such as color quantization
[15] or bio-engineering [17]. EAs have also been applied to other
clustering problems [26,27], and also recently to bi-clustering
problems [14,28]. There are different types of evolutionary
approaches that have been studied in clustering problems, such as
evolutionary programming [29], evolutionary algorithms [30] or
particle swarm optimization [31].

In the last few years a lot of applications of clustering in atmo-
spheric sciences have been tackled, in the majority of cases in
climatology and meteorology applications, but also in energy-
related problems. For example, the prediction of the maximum
power point of photovoltaic systems is tackled in [38] as a clus-
tering problem, solved by a genetic K-means algorithm. The clas-
sification and track of storms or weather systems can also be stated
as a clustering approach [32]. Moreover, the climatological analysis
about relations between winds, precipitation or even pollution and
pressure patterns is a classical problem that can be solved as
a clustering problem [7e9,33e35]. In the majority of these
approaches, pure meteorological solutions are adopted, in which
the equations of the atmospheric dynamics are used to obtain
criteria for the classification of the systems.

2.2. An introduction to evolutionary-based algorithms

In this section we summarize the basic principles of Evolu-
tionary Computation (EC). EC is a set of population-based,
stochastic and iterative optimization techniques, based on the
concepts of natural evolution [36]. EC approaches tackle difficult
problems by evolving approximate solutions in a computer,
following certain rules borrowed from Darwin’s evolution theory.
Usually, any algorithm based on EC is called an Evolutionary
Algorithm (EA). EAs have been applied to many different optimi-
zation problems, in a huge range of applications, including energy-
related problems [37e41].

Given an optimization problem, EAs typically start from an
initial set, called population, of random (candidate) solutions
(individuals). These solutions are evolved by the repeated appli-
cation of a set of evolutionary operators mainly selection, crossover
and mutation. Individuals are typically selected according to the
quality of the solution they represent. To measure the quality of
a solution, a fitness function is assigned to each individual of the
population. Hence, the better the fitness of an individual, the more
possibilities the individual has of being selected for reproduction
and the more parts of its genetic material will be passed on to the
next generations. This is the principle of any selection mechanism
incorporated to an EA. The selected individuals are reproduced by
means of crossover and mutation operators. In simple terms
crossover exchanges some genetic material between two or more
individuals, while mutation changes a small part of the genetic
material of an individual to a new random value.

By applying these operators in a loop fashion, as EA explores the
space of possible solutions of an optimization problem. EAs have
been shown to be efficient in searching in huge spaces.

3. Problem formulation

The problem in this paper may be summarized as follows:
having a given synoptic-scale pressure situation, can we approxi-
mate the wind speed that we will have in a given point (wind
farm)? Is there a direct relationship between the wind speed in the
point and the synoptic-scale pressure situation (and canwe extract
such a relationship or pattern)? These problems are of major
importance for all the companies involved in the management of
wind farms. The first question is related to the prediction in the
long-term meanwind speed and wind rose. The second question is
related to the analysis of production of wind farms. Both problems
are in the core of this research, and also the problem formulation
we are interested in, depends much on them. We have structured
the problem formulation specifically for the case of a given wind
farm in Spain, with the corresponding synoptic pressure measures
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over the Iberian peninsula, however, the problem can be easily
extended to any other region or peculiarity.

Let dt, t ¼ 1.,T, be a series of daily wind speed real vector
(module and direction), measured in a given point (a wind farm in
this case), for a given period of time T. Let Pt, t ¼ 1.,T, be a series of
daily synoptic-scale pressure measures in a grid. In our case, each
component of Pt is a matrix of 14 � 13 surface pressure values (182
values), measured in a grid surrounding the Iberian Peninsula
(Fig. 1). The problem of pressure pattern extraction consists of
forming a set of N clusters (centroids) in the space of pressure
(space Pt), in such away that the dispersion of the associated values
of dt in each cluster is minimized, i.e., in such a way that the
following total measure is minimized:

f1ðxÞ ¼ 1
T

XN
i¼1

X
t˛gi

���dt � di
��� (1)

where x is a vector representing a given synoptic pattern assign-
ment of length T (we consider a series of T pressure patterns to be
assigned, in N clusters or centroids), gi stands for the set of days
belonging to a given class i, and di stands for the mean value of the
wind speed within class i.
Fig. 1. Pressure measurements grid and location of associat
We can also consider a second objective function based on the
difference of modules between each wind vector and the mean
value of each class:

f2ðxÞ ¼ 1
T

XN
i¼1

X
t˛gi

������dt j � ���di������ (2)

Note that f1 is a measure of Mean Absolute Error (MAE), and tries
to explain both wind speed and wind direction. Note that using f1
we can reconstruct the average wind rose from the pressure maps.
On the other hand, f2 is only focused on the wind speed module,
without taking into account the wind direction. This point is
sometimes important, since wind farms are designed to be
optimum for a medium wind coming from a giving direction. In
addition, this study with f2 allows a reconstruction of the historic
wind variability in a given zone, since there exist pressure maps
since about 1950 which can be used.

Note that this is a problem of clustering in the space of matrices
Pt, with a function of evaluation in the space of wind speed vectors
dt. These separate working spaces make the processing of clus-
tering computation and evaluation difficult. Also, note that the high
dimension of the pressure space Pt is an extra difficulty. We have
ed wind speed measurements (in Lambert projection).



Fig. 2. Crossover applied to the integer part of the individuals.
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tackled the problem by means of an evolutionary-based systems,
which will be described and fully analyzed in the next sections.
4. An evolutionary algorithm for discovering significative
pressure patterns

In the following sections we describe the main particularities of
the problem tackled in this paper, and how we can adapt an EA to
look for pressure patterns in an efficient way. We also describe the
specific operators implemented in this work to improve the search
of the algorithm in this particular problem.
17 2 12 153 21 93 19 66 | 0.17 -2.23 3.46 4.18 -1.25 -2.26 3.14 5.56 ...

11 110 70 42 17 180 21 1 | -4.10 3.12 0.16 -1.21 2.19 6.18 -1.23 -0.27 ...

17 2 12 153 21 93 19 66 | -4.10 -2.23 3.46 -1.21 -1.25 6.81 -1.23 5.56 ...

11 110 70 42 17 180 21 1 | 0.17 3.12 0.16 4.18 2.19 -2.26 3.14 -0.27 ...

Fig. 3. Crossover applied to the real part of the individuals (parts of centroids
interchanged).
4.1. Problem encoding

The first important task to face this problem is to find a simplest
way to encode matrices Pt. An intuitive and easy form is to reduce
the number of points in the grid: instead of using the information of
all the points in the grid, we can condense somehow the infor-
mation by using differences of pressure between points in the grid.
Of course, different number of differences can be used. In this case,
we have encoded the information of the grid by using a set of four
pressure differences Dp (eight points in the grid). This way we
reduce the space of matrices Pt to a space of four dimensions
(space of differences of pressure). Note that we do not fix the points
of the grid involved in the calculations of the differences, but
the algorithm must locate the optimal points which provide the
best possible encoding of the synoptic situation Pt. Thus, the first
part of the encoding in the proposed evolutionary algorithm is a set
of eight integer numbers Pi˛½1;.;182�; i ¼ 1;.;8; (number of
points in the grid considered), representing four pressure differ-
ences, in the following way:

Dpk ¼ PtðP2k�1Þ � PtðP2kÞ; k ¼ 1;.;4: (3)

Then, once we have obtained an efficient representation and
encoding of matrices Pt (using the four differences Dpk ), we need to
encode the different N clusters in the new space of differences of
pressure. This can be easy done by encoding each centroid of the
cluster in the space, as a four-dimensional vector of real values (one
dimension representing each difference of pressure). Thus, each
centroid will be represented by a string of 4 real numbers, and the
complete set of centroids can be therefore encoded in a vector of 4N
real numbers.

The final encoding of the problem in the proposed evolutionary
algorithm will be therefore the following:
½P1;.;P8jc11; c12; c13; c14;.; cN1; cN2; cN3; cN4� (4)
where we have separated the integer part of the encoding from the
real part. Note that we apply different operators to the integer and
real part of the individuals in the algorithm, as we will describe in
the next sections.

4.2. Crossover operator

The crossover operator is the core of any evolutionary search.
For this problem, we have implemented a mixed crossover
approach, different for the integer part of the individual and for the
real part. In the case of the integer part (first of the individual in Eq.
(4)), we implement a multi-point crossover. After forming couples
with the individual in the population, we implement the multi-
point crossover by means of a randomly generated binary template
of length 8 (length of the integer part of the individual). A 1 in the
template means that the corresponding genes of the couple will
swap, whereas a 0 means that the genes will not swap. A different
template will be generated for all the couples in a generation. Fig. 2
shows a small example of this crossover procedure for the integer
part of the individuals.

The crossover operator for the real part of the individual is
carried out also implementing a multi-point crossover approach,
but in two different modes: first a normal mode, in a similar way as
the previous operator defined above, but in the real part of the
individual (see Fig. 3). Note that, in this case, the template has
length 4N. Also, we consider a second crossover mode, in which we
interchange only parts of the individual belonging to a certain
centroid (no part of centroids are allowed to be swapped). The
length of the template in this second runningmode of the crossover
is N. Fig. 4 shows an example of this second crossover mode for the
real part of the individuals. Basically, the first crossover mode
generates new centroids by combining existing ones, and the
second mode interchanges two centroids from different individ-
uals. Both crossover modes are interesting and have an important
role in the evolution of the population. Note that we apply the
crossover operator a number of times necessary to obtain an
offspring population of the same size as the initial (parents) one (L).

One important thing to be taken into account is that after
applying the crossover operators, there may be situations in which
a given centroid has no pressure matrix assigned. When one of
these cases occur the void centroid is erased and its components
reassigned to the proximity of a valid centroid (one with pressure
matrices assigned). This procedure is carried out by assigning the
coordinates of the centroid (differences of pressure) and slightly



17 2 12 153 21 93 19 66 | 0.17 -2.23 3.46 4.18 -1.25 -2.26 3.14 5.56 ...

11 110 70 42 17 180 21 1 | -4.10 3.12 0.16 -1.21 2.19 6.18 -1.23 -0.27 ...

17 2 12 153 21 93 19 66 | -1.25 -2.26 3.14 5.56 ...-4.10 3.12 0.16 -1.21

11 110 70 42 17 180 21 1 | 2.19 6.18 -1.23 -0.27 ...0.17 -2.23 3.46 4.18

Fig. 4. Crossover applied to the real part of the individuals (complete centroids
interchanged).
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modifying them by adding a Gaussian noise to each coordinates.
The pressure matrices are then reassigned to their nearest centroid.
With this easy procedurewe avoid the presence of void centroids in
the evolutionary algorithm, which distorts somehow the efficiency
of the search.
4.3. Mutation operator

Mutation operator is applied with a very low probability
(Pm ¼ 0.01) to each individual in the offspring population. Once
a given individual is going to be mutated, the procedure of muta-
tion is divided into two different versions, depending onwhether it
is applied on the integer part or to the real part of the individual.
The mutation of the integer part is carried out by means of an
integer randomized substitution of the current values of the indi-
vidual, by different integers, in the interval [1,182]. The mutation in
Fig. 5. Example of grid used in the definit
the real part of the individual is carried out by adding samples of
uniform noise in the interval [-5,5], to a number of randomly
chosen values of the real part in the mutated individual.
4.4. Selection operator

In this paper we use a tournament selection, which will be
applied to the joint population formed frommerging the initial and
offspring populations. The result of the selection operator will be
a single population, of size L, which will be the parents of the next
generation of individuals. Basically, once the complete joint pop-
ulation of parents and offspring is formed, the standard tourna-
ment selection, as described in [42], has two main steps:

� Conduct pairwise comparison over the union of parents and
offspring: for each individual, p opponents are chosen
uniformly at random from all the parents and offspring. For
each comparison, if the individual’s fitness is better than the
opponent’s, it receives a “win”.

� Select the L individuals out of the union of parents and
offspring that have the most “wins” to be parents of the next
generation.

Using this easy procedure, the remaining L individuals act as the
parents of the next generations, and the crossover and mutation
operators are applied again in a loop fashion, until the maximum
number of generations are reached.
5. Experimental part

This section presents the experimental part of this study. It is
structured in three different parts: first, we present the data
available, and the methodology of the experiments carried out. An
alternative approach for comparison is then presented in Section
5.2. Finally, we present the results obtained by the proposed
ion of the WT algorithm’s equations.
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evolutionary algorithm and the comparison with the existing
methodology.

5.1. Data available

Wind data from10 years (1999e2008) of ameteorological tower
close to a wind farm in the north of Guadalajara (Spain) are avail-
able for this study. They consist of wind speed and direction data,
taken in the tower at 40 m of height every 10 min. Averages over
24 h are considered to obtain daily data vectors dt. On the other
hand, average daily pressure maps for the same period have been
obtained from the National Center for Environmental Prediction/
National Center for Atmospheric Research Reanalysis Project
(NCEP/NCAR) [44,45], which are public data profusely used in
climatology and meteorology applications. As previously
mentioned, we have considered a uniform grid in latitude and
longitude, shown in Fig. 6, with 182 measurement points. Recall
that the proposed evolutionary algorithm uses this value as
Fig. 6. Example of four pressure patterns (out of the total 26) obtained
a parameter of the encoding (in the differences of pressure, integer
part of the encoding). We have set the 2/3 of the data for training
and the final 1/3 as a test set, where we will measure the quality of
the compared algorithms.

5.2. A weather types (pure meteorological) approach for
comparison purposes

In this paper we consider an existing method recently devel-
oped and applied in the meteorology field for weather type clas-
sification. The method was first introduced in [43] and [7], as a first
approach to obtain an objective weather type classification for the
British islands and Portugal, respectively. More recent works have
extended and improved the original method in order to obtain
a robust method for synoptic pressure pattern classification, also
known as weather-type classifier or weather-type circulation
patterns in the meteorological field, applying the method to the
prediction of rainfall in the Iberian Peninsula [8].
by the proposed evolutionary algorithm using objective function f2.



Table 1
Comparison of the results obtained by the Weather Types (WT) algorithm in terms
of objective functions f1 and f2. The class acronyms stand for: N (north), NE (north
east), E (east), SE (south east), S (south), SW (south west), W (west), NW (north
west), H (high pressure), L (low pressure).

Class WT (f1) WT (f2)

N 6.1032 2.1610
NE 4.3350 2.8467
E 4.6294 1.6812
SE 3.3555 1.0684
S 4.2521 1.8131
SW 4.6509 2.5693
W 4.5786 2.5731
NW 5.0759 2.3238
H 4.9692 1.3034
L 4.8432 2.3045
HN 5.4200 2.3921
HNE 4.4914 2.5811
HE 3.8727 1.5669
HSE 2.9818 0.9793
HS 3.5171 1.0155
HSW 3.6246 1.3747
HW 2.9900 1.2288
HNW 3.7248 1.5307
LN 5.6579 1.5555
LNE 5.9747 1.3312
LE 4.0312 1.9162
LSE 4.4421 1.1468
LS 6.3267 2.7714
LSW 6.2862 4.9242
LW 4.7166 2.3264
LNW 5.8609 2.5247

Average 4.6771 1.8490

Table 2
Comparison of the results obtained by the proposed EA algorithm in terms of
objective functions f1 and f2.

Class EA (f1) EA (f2)

1 4.0948 0.9219
2 3.5823 1.9341
3 2.8869 0.9451
4 6.0664 1.7223
5 3.9031 1.6298
6 2.8654 1.3354
7 4.5260 1.1268
8 2.8933 1.0975
9 2.7333 2.1016
10 4.0927 2.7232
11 3.7860 1.2755
12 3.6864 1.2671
13 4.1649 1.4865
14 4.7601 1.2354
15 3.7261 1.6495
16 2.8397 1.9007
17 5.2507 2.4052
18 3.1603 2.2761
19 2.9757 2.8951
20 3.7177 0.9425
21 3.2553 1.7015
22 5.4534 2.9094
23 4.6713 1.1181
24 3.7745 1.1165
25 3.6191 1.3853
26 4.6443 1.7821

Average 3.7372 1.3755
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The method considered is basically described in [8], and it is
based on the equations of the atmospheric dynamics considering
a given point of the Earth and some neighbors points. In order to
obtain a classification of pressure pattern, it considers the value of
two indexes flux and vorticity, F and Z respectively. F is related to
the geostrophic flux, whereas Z is directly related to the absolute
vorticity. The following equations show how to obtain the values of
F and Z from a grid of pressure measurement such as the one given
in Fig. 5 (it shows and example for a location in Lisbon, in any other
location the obtained equations would be equivalents).

This method sets off from the equations for the geostrophic
wind, given by:

ug40� ¼ � 1
rf

vp
vy

z� 1
rfl

½pH � pC �
Dy

¼ � 1
rf40�

Fy
RDl

(5)

vg40+ ¼ 1
rf

vp
vx

z
1
rfl

½pF � pE�
Dx

¼ � 1
rf40�

Fx
Rcos

�
l40�

�
Dl

(6)

where l is the latitude, 4 stands for the longitude, and f stands for
the Coriolis parameter, given by the expression f ¼ 2SsinðlÞ. We
can also calculate the variation of the geostrophic wind compo-
nents with x and y, yielding:

vvg40+

vx
z

1

2Rcos
�
l40+

� Dvg
D4

¼ 1

2R2rflðD4Þ2cos
�
l40+

�½ðpG � pFÞ

� ðpE � pDÞ� ð7Þ

�vug40+
vy

z� 1
R
Dug
Dl

¼ 1

R2rf40+ðD4Þ2
"
sin

�
40+

�
sin

�
45+

��pJ � pH
�

�
sin

�
40+

�
sin

�
35+

��pI � pJ
�#

(8)

Now, using Eqs. (5) and (6) an index for the flux from the south
(FS), flux from the west (FO) and total flux F, can be constructed in
the following way:

FO ¼
�
1
2
ðp12 þ p13Þ � 1

2
ðp4 þ p5Þ

�
(9)

FS ¼ 1
cos

�
l40�

��1
4
ðp5 þ 2p9 þ p13Þ � 1

4
ðp4 þ 2p8 þ p12Þ

�
(10)

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFOÞ2þðFSÞ2

q
(11)

In the same way, using Eqs. (7) and (8) index for south and west
vorticity, and total vorticity can be calculated:

ZS ¼ 1

2cos2
�
l40+

��1
4
ðp6 þ 2p10 þ p14Þ � 1

4
ðp5 þ 2p9 þ p13Þ

� 1
4
ðp4 þ 2p8 þ p12Þ þ 1

4
ðp3 þ 2p7 þ p11Þ

�
ð12Þ

ZO ¼
sin

�
40+

�
sin

�
35+

��1
2
ðp15 þ p16Þ � 1

2
ðp8 þ p9Þ

�

�
sin

�
40+

�
sin

�
35+

��1
2
ðp8 þ p9Þ � 1

2
ðp1 þ p2Þ

�
(13)

Z ¼ ZSþ ZO (14)
Thus, in [8] it is shown how to obtain a relationship between the
values of F and Z and a set of weather types by using a set of rules: if
jZj< F, then flux is considered strait, and then this produces 8
weather types, which coincide with the directions of the wind rose.
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If jZj > 2F , the pattern is considered as purely cyclonic, if Z > 0, or
purely anticyclonic if Z < 0. In the case that F< jZj< 2F , the flux is
considered hybrid, and it is characterized by its direction and its
circulation, producing 16 different weather types. Considering all
these possibilities, in [8] 26 weather types (classes) were identified.
Moreover, in [8] this classification was used to successfully pre-
dicting rainfall in the Iberian Peninsula. Posterior works [34,35],
also used this classification method in the estimation of wind
patterns in the Iberian Peninsula.

Summarizing, the weather types (WT) algorithm first proposed
by [43] and [7], and recently improved by [8], is the most successful
existing algorithm for pressure pattern recognition. It has been
chosen therefore as a reference for comparison of our proposal. In
order to make possible the complete comparison, we have run our
evolutionary approach setting 26 classes. The results obtained by
the two algorithms are shown in the next subsection.

5.3. Results

Tables 1 and 2 show the results obtained by the proposed EA,
and the weather types (WT) approach in [8], respectively. These
tables summarize the results grouped by classes, in terms of the
Objectives Functions (1) and (2). Note that the classes obtained by
each algorithm are different, and thus, it is not possible to compare
class by class the objective function values. However, it is possible
to compare the average values obtained by the different algorithms
in the whole test set. Note that the EA approach outperforms the
WT approach using both objective functions. Note that the WT
algorithm provides best quality solutions when its performance is
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Fig. 7. Wind patterns obtained by the proposed evo
characterized with the objective function f2 (module of wind
speed), whereas the results in terms of wind speed vector (function
f1) is not so accurate. In average of the 26 classes, the EA optimizing
function f2 obtained the best quality, with an average value of
1.37 m/s. The EA optimizing function f1 obtains a worse result, with
an average value of 3.73 m/s. Note, however, that this result is again
better than the one obtained by the WT in terms of the f1 objective
function.

Fig. 6 shows an example of some of the pressure classes found
by the EA using objective function f2 (for simplicity we show 4
classes out of the total 26). Within the pressure classes found by
the EA there are several which include high pressures in different
positions of the Atlantic ocean, some other classes are character-
ized by very low pressures over the English islands and Ireland,
there are also pressure classes in which it is easy to detect high
pressures in central Europe and finally, a group of classes with
a predominant flow from the west. In general the proposed EA
groups the pressure patterns in classes which are easily recog-
nizable as average meteorological situations what is, intuitively,
a good point of reference.

The good performance of the approach can also be appreciated
in Figs. 7 and 8, which show the total 26 different patterns in terms
of the wind series. The first figure provides the results of the wind
classes by using objectives functions f1, whereas the second figure
shows the results obtained by the EA algorithm optimizing objec-
tive function f2. The centroid in each class is notated with a red
cross, and the module of the centroid is depicted by a green circle
(all the points in the circle have 0 error in module with respect to
the centroid of the corresponding class). Note that in the solutions
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Fig. 8. Wind patterns obtained by the proposed evolutionary algorithm using objective function f2.
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provided by the proposed EA, the wind samples within each class
are compacted, as expected in a good quality solution.

Fig. 9 shows a histogram of the results obtained by the EA (over
30 runs), using as objective function f1 (given by Eq. (1)), or f2,
(given by Eq. (2)). As can be seen, when the objective function
mainly optimizes the module (function f2), the values obtained by
the EA are more compacted, i.e. their variance is smaller that when
both module and wind direction are optimized. Note that in these
figures it can also be seen that the results obtained with the f2
objective function are, in average, better than using objective
function f1, as previously shown in Tables 1 and 2.

Finally, we will give an example of wind speed series recon-
struction based on the pressure clustering obtained with the EA
a

Fig. 9. Histogram (over 30 runs of the algorithm) of the results obtained by the pro
and the WT. Fig. 10 shows these examples: Fig. 10 (a) shows the
wind speed series reconstruction from the pressure clustering
obtained with the proposed EA, whereas Fig. 10 (b) shows the wind
speed reconstruction obtained with the WT approach. The first
sixty samples of the test set have been chosen to show this
comparison. As can be seen, the wind speed series reconstruction
obtained with the pressure clustering given by the EA is more
accurate than the one obtained with theWT, as expected. Note that
the wind speed series reconstruction using the EA follows quite
well the wind speed trend in the whole period of 60 d. This indi-
cates that the pressure clustering obtained with the EA is signifi-
cant, and we have been able to extract a correct relationship
between the pressure classes and the wind speed series.
b

posed EA; (a) using f1 as objective function; (b) using f2 as objective function.



a

b

Fig. 10. Reconstruction of the 60 first wind speed values of the test series; (a) Real
wind speed and EA reconstruction; (b) Real wind speed and WT reconstruction.
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6. Conclusions

In this paper we have presented an evolutionary algorithm for
a new problem of clustering in a search space of atmospheric
pressures in a grid. The problem’s objective function is related to
ameasure of wind speed in a given point near awind farm. It is well
known the relationship between the synoptic pressure measures
and wind speed measures in related geographical zones. Thus, the
accurate obtention of this relationship could be of great interest to
companies involved in the management of wind farms, since this
problem is in the core of different applications such as long-term
wind speed prediction and also seasonal analysis of production
results. In addition, note that there are not many clustering algo-
rithms to extract pressure patterns under accurate wind speed
measures so, in this sense, this work covers, from the perspective of
artificial intelligence, a niche of important research that had only
been tackled from the meteorological point of view. Thus, to our
knowledge, this is the first work which incorporates an evolu-
tionary algorithm to the extraction of these synoptic pressure
patterns. We have developed a specific encoding in the evolu-
tionary algorithm to deal with the problem, and also ad-hoc
mutation and crossover operators that improve the performance of
the evolutionary approach in this problem. The performance of the
evolutionary algorithm proposed has been shown to be very good
in a real example in the Iberian Peninsula, outperforming the
results of a previously existing (purely meteorological) algorithm.
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